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Comparison of Thermal Statistics Derived from Observational Data Sets
in the Tropical Atlantic and Pacific Oceans

John F. Festa
Robert L. Molinari

ABSTRACT. Statistical analysis of surface and subsurface temperature data in the
tropical Atlantic and Pacific Oceans is presented. The statistics were estimated from
the Comprehensive Ocean-Atmospheric Data Set (COADS) and the historical
expendable bathythermograph (XBT) observations. Spatial structure functions
(semivariograms) for the anomaly fields of sea surface temperature and the
temperature at 200 m and 400 m were estimated for a 2 degree by 2 degree grid in
the tropical oceans. Dominant scales of spatial variability are identified and
compared with other investigations.

1. INTRODUCTION

Upper ocean temperature (UOT) data are an important component of many oceanographic
studies directed at determining the role of the ocean in global climate. In the World Ocean
Circulation Experiment (WOCE), “there is a need for measurements of the change in heat content
in the upper ocean, primarily as a way to improve the reliability of estimates of the heat flux”
(WMO, 1986). In the post-TOGA (Tropical Ocean Global Atmosphere) era, UOT data are “central
to the successful initialization of coupled atmosphere-ocean models™ directed at “supporting
short-term climate predictions” (NRC, 1994). In the Atlantic Climate Change Program (ACCP),
UOT data collection and analysis are supported to study the role of subsurface oceanic processes on
decadal sea surface temperature (SST) variability (Molinari et al., 1994). All three programs
recognize the need for continued UOT observations and have as an important objective the
establishment of long-lived networks that will constitute the Global Ocean Observing System
(OOSDP, 1995). Sampling requirements, however, vary between the three programs, consistent with
their somewhat different objectives. The majority of the data collected for these programs is from
a volunteer observing ship (VOS) network, comprised of merchant ships that typically have fixed
routes on which ship’s crew members deploy expendable bathythermographs (XBTs) at specified
intervals.

Sampling strategies for the VOS have primarily been based on a series of statistical studies in
which the time and space scales of upper ocean thermal variability were estimated (Bretherton ef al.,
1976; White and Bernstein, 1979; White ef al., 1982; Meyers et al., 1991; Sprintall and Meyers,
1991; Festa and Molinari, 1992, for example). Based on some of these estimates, bimonthly profiles
on a 1.5 degree of latitude by 7.5 degree of longitude grid represent the ideal TOGA network.
WOCE and ACCP have modified this resolution somewhat, with four probes per day deployed on
a monthly basis along VOS lines.

More recently, White (1995) reported on the results of an oceanographic global design study
where covariance statistics were computed from temperature profiles at each 5 degree latitude by
10 degree longitude quadrangle in the ocean at depths of 0, 200, and 400 m. White’s global analysis



shows significant non-uniformity in the resulting distributions, and he indicates that this
“non-uniformity in the covariance statistics can cause inconsistencies in the analysis and
interpretation of gridded fields and upper ocean temperature anomalies.” White addressed this
difficulty, following Sprintall and Meyers (1991), by basing the global design on a “uniform set of
covariance statistics that defines the minimum space and time scales to be detected by the proposed
global observing system at all depths.” The minimum covariance scales selected by White were
2.5 degrees of latitude, 5 degrees of longitude, and three months.

Many of the statistical studies used to establish sampling requirements for both meteorological
and oceanographic fields were based, in one form or another, on the optimum interpolation (OI)
method described by Gandin (1963). One of the most important steps in this analysis is the accurate
specification of the statistical characteristics of the field in question, which is often assumed to be
homogeneous and isotropic. Typically, these assumptions are considered to be met if the longer
term mean field is removed and the analysis is done on anomaly fields. However, problems can arise
when knowledge of the long term mean is uncertain or unknown (Bretherton ef al., 1976) and often,
even, the anomaly fields are neither isotropic or homogeneous.

The statistical characteristics for Gandin’s method are usually given in the form of either a
correlation or covariance function which serves as the basis for interpolation and error analysis.
More recently, specification of the statistics has been in the form of structure functions, with the
interpolation and error analysis techniques based on those used extensively in the geostatistical
technique commonly called “kriging” (Matheron, 1963; Journel and Huijbregts, 1989; Cressie,
1990). Structure function analysis has been applied to both oceanographic and meteorological data
(Hansen and Herman, 1988, 1989; Festa and Molinari, 1992; Gunst, 1995; Frankignoul et al., 1996;
Hansen and Poulain, 1996). Statistical and spatial data analysis based on the kriging method are now
available in commercial statistical analysis packages.

One major problem in applying OI to any data set and, in particular, to the subsurface ocean
observations is the absence of sufficient data. It becomes extremely difficult to determine the spatial
structure required in network design and objective mapping analysis when there are too few data or
data of mixed quality. Often this process becomes very subjective and sometimes underestimated
in its importance. Nevertheless, this is the most important step in the application of objective
analysis.

Even when sufficient data are available, the statistical forms used are sometimes assumed rather
than supported by the data. For example, the most common functional form used in oceanographic
objective analysis is the Gaussian function (White et al., 1982; Meyers et al., 1991; Clancy et al.,
1992; Reynolds and Smith, 1994). In many cases the data do not support this functional form and
the spatial statistics are often better represented by an exponential function (see, for example, Festa
and Molinari, 1992; White, 1995; Frankignoul et al., 1996; Kessler ef al., 1996). As will be seen,
the choice of the statistical representation of the data can also have a great effect on the results,
especially in determining the estimated error of the mapped fields.

Four types of analyses are presented in this report. First, is the analysis of the SST statistics
derived from the Comprehensive Ocean-Atmospheric Data Set (COADS; Woodruff et al., 1987) and
the XBT data sets. COADS provides global SST coverage that, when compared to XBT data, is



relatively dense in time and space. We believe that the surface statistics, using structure function
analysis obtained from the COADS data, will provide a measure of the representativeness of the
surface statistics derived from XBT data. Furthermore, confidence in the estimates of subsurface
statistics determined from XBT data will be gained (eroded) if the surface statistics are similar
(dissimilar).

Second, subsurface statistics obtained from the XBT data set are compared to those derived
from the National Centers for Environmental Prediction (NCEP) numerical model simulations of
the Atlantic and Pacific Oceans (Behringer, 1994; Ji et al., 1995). These models assimilate XBT and
other data to provide basinwide representations of the upper ocean thermal field. Although the
model does assimilate the XBT data and the simulated and observed temperature fields are thus not
independent, comparisons may provide a measure of the effect of assimilation procedures on the
observed fields.

Third, data voids in the COADS SST fields have been recently filled (for example, Dasilva et
al., 1995, hereafter Dasilva; Smith et al., 1996, hereafter Smith) using different statistical tech-
niques. These reconstructed data sets are being used for numerical model initialization and global
heat flux studies. By applying the spatial statistics that are derived directly from the COADS data
sets, we have reconstructed 40 years of COADS data (1950-1989). The resulting climatology and
anomaly fields for selected months and time periods are compared to those of Dasilva, Smith, and
the NCEP models.

Fourth, the statistical analyses of the COADS and XBT SST anomaly fields are applied to the
current and proposed WOCE tracklines to determine the error fields that would result depending on
the number of lines occupied and the sampling frequencies along the tracklines. These analyses are
focused on two regions that are extremely important in climate studies and predictions but,
unfortunately, have been sparsely sampled: the tropical Atlantic and Pacific Oceans. The latitude
limits for both basins are taken as 30°S and 30°N. The longitude limits for the Atlantic are 70°W
and 15°E and for the Pacific are 150°E and 90°W. Examples of the data distribution in these
regions for the decade of the 1980's are given in Figures 1 and 2. Analysis was also preformed in
the eastern tropical Pacific (longitude limits of 180°W and 120°W; the Nifio 34 region). We begin
with a description of the data and the statistical analysis technique. Results are presented and a
discussion of the implications of the analysis of these data sets to design studies completes this
report.

2. DATA SOURCES

The two data sets used in this report are the highly sampled historical COADS SST global data
and the XBT historical data collected in the Atlantic and Pacific Oceans. The COADS SST data are
collected by merchant ships. We use the monthly summary data on a 2 degree latitude by 2 degree
longitude grid for the time period of January 1950 through December 1989 (see Woodruff et al.,
1987 for details of the data and binning procedures). The summary SST data contains both mean and
median values. We have chosen to present the 40-year (1950-1989) median values analysis, since
the median is less likely to be affected by questionable data values. Analysis has also been
preformed using mean values over shorter decadal time periods (i.e., 1950-1959,...,1980-1989).
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There is no significant difference in the results using either the mean or median values. Results are
also similar between the 40 year and decadal time periods; in the Pacific Ocean this results from a
uniform distribution of El Nifio and La Nifia events during the decadal time periods.

The historical XBT data have been compiled at the Atlantic Oceanographic and Meteorological
Laboratory (AOML) for the Atlantic and Pacific Oceans. In the Atlantic, historical XBT data have
been quality controlled (QC) for the period of June 1966 through December 1991 (Daneshzadeh et
al., 1994) and in the Pacific for the period of January 1979 through December 1993 (Donoso et al.,
1994). The XBT data are averaged by month and year on the COADS 2 degree by 2 degree data
grid. Examples of the XBT and COADS data distribution on this grid for the months of January and
July are given in Figures 1 and 2.

Data from the output of two NCEP data assimilation model runs are used for the time period
January 1980 through December 1989. The Pacific data consists of monthly gridded temperature
profiles taken from the sixth reanalysis model run (see Ji et al., 1995 for details). The Pacific model
grid covers the region between 122.25°E-71.25°W; 35.5°S-44.5°N. It is a non-uniform grid of
approximately 1.5 degree of longitude by 1.0 degree of latitude. Monthly averages for each year are
gridded onto the 2 degree by 2 degree COADS grid. Anomaly fields, based on the 10 year monthly
averages of model data, are calculated from the reanalysis data set. Similar calculations are
performed using the Atlantic model data set from the third reanalysis model run (see Behringer, 1994
for details) for the same time period, January 1980 through December 1989, and the region
97.5°W-19.5°E and 48.5°S-63.5°N .

3. METHOD OF ANALYSIS

Optimum interpolation (OI) schemes are commonly used to map the anomalies of temperature
and other field variables onto a gridded network or to design an “optimal” sampling design network.
These methods are also referred to as “objective analysis” or “objective mapping.” An accurate
representation of the statistics of the data to be mapped is a critical and essential requirement of OI
schemes. These statistics are required to define the coefficients for an optimal linear predictor such
that the mean square error between the unknown true value and the estimated value is minimized.
Once this is determined, gridded values can be predicted and a measure of the reliability, in the form
of an error map, can also be obtained.

For example, if a variable Z is to be predicted at some spatial location x, surrounded by N
observations of the variable, then

Z(x) f) WIZ(x)+e(x)], (1
i=1
where ¥ are the weights determined to minimize the mean-square error
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€ is the rms error associated with the observations, and the angle brackets denote ensemble averages.
Since the true value of a variable is usually unknown, it is necessary to adopt a probabilistic
approach to the problem, where the interpolated value Z(xo) is assumed to be the outcome of a
random process whose statistics are known.

Gandin (1963), a pioneer of objective analysis techniques, initially developed the statistics of
the variable to be mapped in terms of the structure function S; defined as

8, =50, %) = (126) ~ZG)I) 3)

the mean-square difference between the values of Z at x; and x;. The value S; can be represented by
S(h) where h is the lag, a measure of the distance between variable pairs. Gandin showed that for a
homogeneous and isotropic field there is a relationship between the structure function S(h) and the
autocorrelation function C;; defined as

C,=Cx) =(Z&) Z(x)) = C(), @)

such that
chy = % [S (=) - S, (5)

The advantage of using the structure function is that the analysis can be done on either the field
variable or the anomaly of the variable, if the mean and its error are well know. In addition, the
structure function, typically referred to as the variogram in geostatistical applications, can always
be estimated in contrast to the autocorrelation function, which under certain conditions cannot be
estimated or is not well defined. Recently, Gunst (1995), in an analysis of U.S. temperature
anomalies, recommends structure function fitting as the preferred method for estimating spatial
correlations. Gunst states that the common occurrence of temporal trends and autocorrelations in
meteorological data can induce substantial bias and an overestimation of spatial correlations when
using correlation function fitting, and that the potential for temporal bias in the estimated spatial
correlations from structure function model fits can be reduced, if not altogether eliminated.

Perhaps the most important step in this analysis is selecting the analytical form of the
semivariogram to approximate the raw data. The semivariogram () is equal to one half of the
structure function and is used to determine the value of a variable as well as its error. Functional
forms of several of the classical model semivariograms used in geostatistics (see Figure 3) are:

(a) Linear: y=Cy+C, xh,

(b) Exponential: vy =C,+ C; x (1-exp (-h/(C,)),
(¢) Gaussian: y =C, + C, x (1-exp (-h/C,)?),
(d) Power: y=C,+C, x -E&y).

Q\)Cz.



The value of the semivariogram at lag zero, C,, is referred to as the nugget, which is a measure
of both the instrument and subgrid geophysical noise. In the exponential and Gaussian functional
forms, the asymptotic value of the semivariogram, C, + C,; (which is not present in either the linear
or power function models) is known as the sill and represents the variance of the field. The
exponential model shows a linear behavior near the origin, while the Gaussian model shows a
parabolic behavior. For both the exponential and Gaussian models, C, is a measure of the range over
which correlation exists and is equivalent to the e-folding scale of the covariance function. The
practical range, i.e., the distance at which the correlation function effectively has reached zero, is
given as 3 x C, for the exponential function and /3 x C, for the Gaussian function.

When the variability of the component semivariograms, for two-dimensional spatial variables,
depends only on the magnitude of the lag A, the structural statistics are considered to be isotropic..
However, when the variability depends on both magnitude and direction, a more common
geophysical occurrence than the simple isotropic case, the statistics are said to be anisotropic.
Anisotropies typically result from the underlying physical processes evolving differently in space.
If the semivariograms can be reduced to isotropic functions by a simple linear transformation of
coordinates, the anisotropy is referred to as geometric; otherwise, it is know as zonal.

Figure 4 shows examples of east-west and north-south isotropic and anisotropic semivariogram
functions. The semivariograms in each direction are the same in the isotropic example. In the
geometric anisotropic example, the sill, i.e., total variance, is the same in each direction and the
range in the north-south direction is half of that in the east-west direction. In the zonal anisotropic
example, the variance in the north-south direction is 50% higher than in the east-west direction.

In most oceanographic design or objective mapping studies to date, isotropic or geometric
anisotropic behavior has been assumed (Meyers et al., 1991; Reynolds and Smith, 1994; Dasilva et
al., 1995; White, 1995, for example); however, as will be seen, the statistical structure of the
COADS and XBT data, especially for the tropical Pacific, indicate zonal anisotropy. The effect of
geometric and zonal anisotropy on the field variable and its error will be discussed in the next
section.

A detailed review of the use of structure functions, as applied in geostatistics, is given by David
(1977), Journel and Huijbregts (1978), Isaaks and Srivastava (1989), and Cressie (1991). A detailed
look at the similarities and differences between Gandin’s OI technique and geostatistical kriging
techniques is given by Cressie (1990) and Herzfeld (1996).

4. DISCUSSION

In this report, we compute and compare semivariograms estimated from the surface COADS
and XBT anomaly data on the 2 degree by 2 degree COADS grid in the tropical Atlantic and Pacific
Oceans. The semivariograms, based on monthly anomaly fields, are examined in both the east-west
and north-south directions. We also have identified the dominant scales of spatial variability in each
direction and compare these values with those of other investigations. As will be shown, there is a
major difference in the determination of spatial scales when the statistical representations are found
to be either geometrically anisotropic or zonally anisotropic in their functional form.



Monthly anomaly maps of the COADS data are obtained by using the statistical interpolation
method know as ordinary kriging (see Festa and Molinari, 1992 for details). Anomaly fields are
compared to the reconstructed data sets of Smith and Dasilva for the months of January and July,
during the decade of the 1980's, using different functional representations for the semivariograms.
Finally, error maps are generated for the proposed WOCE tracklines in the tropical Atlantic and
Pacific Oceans.

A. SST Anomaly Semivariograms

For the COADS data, during the period of January 1950 through December 1989, long term
monthly means are calculated at each 2 degree by 2 degree grid node where there are at least five
years of data. Monthly anomaly fields are obtained by subtracting the long term monthly mean
climatology from the yearly values at each grid node. The same procedure is used to calculate the
long term monthly mean climatology and anomaly fields for the XBT, which are gridded onto the
2 degree by 2 degree COADS data grid.

It should be noted that the COADS grid has been chosen as the base grid for binning data, since
COADS data sets are widely used for numerous oceanographic and meteorological analyses. Use
of this grid should preserve shorter scales, relative to other binning approaches which may bias the
statistical results. For example, data have been averaged onto a coarse rectangular grid, i.e., a
10 degree (or 5 degree) longitude by 2 degree (or 1 degree) latitude grid or anomaly fields have been
calculated on a fine grid (2 degree longitude by 2 degree latitude grid) using a climatology defined
for a coarser grid (5 degree longitude by 2 degree latitude) and then statistical inferences are made
about the data to determine the spatial scales. We feel that these types of pre-conditioning of the raw
data imply, a priori, the dominant spatial scale and direction, can result in a bias in the spatial scales
to be determined, and should be avoided.

Mean squared difference values (i.e., structure functions or semivariograms) in the north-south
and east-west direction were computed for each 2 degree lag bin for each month and each year with
data. Because of data limitations, values beyond 20 degrees of lag are suspect and not used in the
analysis. Monthly composites were formed by taking the average value at any bin over the entire
time period of record. Seasonal and annual composites were calculated in a similar manner. The
four seasons were chosen as December-February (DJF), March-May (MAM), June-August (JJA),
and September-November (SON).

The SST seasonal and annual composite semivariogram values for the COADS and XBT data
sets for the tropical Atlantic are shown in Figure 5 and for the tropical Pacific in Figure 6a (the Nifio
34 subset region with longitude limits of 180°W and 120°W is shown in Figure 6b). There is little
seasonal variability for the COADS semivariograms in either tropical ocean except at the higher lags.
More variability, especially in the Atlantic, is evident for the XBT semivariograms at all lags, which
is the result of the lack of sufficient data during any seasonal time period. Little difference is
observed between the semivariograms for the two Pacific regions.

As is typically done in most objective analysis applications, functional forms are fit to the
binned values and used to determine decorrelation scales, map anomalies, and estimate errors.



However, it should be noted that geostatisticans (see Journel and Huijbregts, 1978 for example)
strongly caution against the blind automatic fitting of parameters to semivariograms, such as least
squares methods, since the values within any bin can often be subject to wide fluctuations and errors.
As an example, the composite and individual yearly binned values of the east-west and north-south
semivariograms, for the tropical Pacific XBT (SST) data from 1980-1989, are shown for the months
of January and July (Figure 7). Note the wide variations about the composite value for each lag
value. It is exactly this type of variability that, unfortunately, makes this reportedly objective
analysis so subjective. Objective analyses routines are often applied to data without considering the
variability of the lag values and the confidence of the functional forms and fits chosen, which can
affect the uncertainty of the results.

For our analysis, we have chosen to use the annual composite semivariograms as a basis for
determining the statistical structure of the data. It is our opinion that the COADS and XBT
semivariograms exhibit exponential behavior. However, while this is consistent with some
investigations, it is also inconsistent with others. Therefore, we have identified three types of
functions (linear, exponential, and Gaussian) that can be fit (cautiously and subjectively) to the
annual composites of the COADS and XBT SST anomaly semivariogram bin values.

We avoid the temptation of using automated programs to determine the fitting parameters.
Instead, we interactively examine each of the semivariograms in each direction and after varying,
as an example, the number of points to use in a fit and the value of the nugget based on extrapolation
to zero lag of both the east-west and north-south semivariograms, obtain coefficients that are
representative of the binned data. Spatial scales of these fits are determined; however, caution is
given, in general, to the values of spatial scales since results can differ, sometimes by a factor of two,
depending on, for example, just the number of points that are used in the fitting process.

Table 1 lists the fitting parameters that were obtained for the analytical SST semivariograms
for the tropical Atlantic and Pacific Oceans for the three different functional forms. The statistical
structure of the annual composite for the Atlantic is shown in Figure 8 and for the Pacific in
Figure 9. The geophysical noise, i.e., nugget, is given by C,. For the linear functional fits, C,, and
C,. represent the slope in the east-west (+) and north-south (o) directions, respectively. The ratio
of these slopes gives some indication as to the degree of anisotropy; larger ratios indicate greater
anisotrophy. For the exponential and Gaussian functional fits, the sum of C,, (C,,) to the nugget,
C,, represents a measure of the total variance in the east-west (north-south) direction. The statistics
are considered geometrically anisotropic when the variances are the same in each direction and
zonally anisotropic when they differ. The values C,, and C,, represent the e-folding scale lengths
(i.e., the decorrelation scales) in each direction and similarly, R, and R, represent the rms errors of
the functional fits.

Comparing the XBT and COADS results provides a measure of the robustness of the results
from the former. The nugget, as determined by the XBT data set, is nearly half of that obtained from
COADS in both tropical ocean basins. Spatial scales in the Atlantic, as determined by the COADS
data, are nearly twice as large as those of the XBT data, while those in the Pacific are approximately
the same. In the Atlantic, the average e-folding scales, taking into consideration all of the
exponential and Gaussian fits, are 8.7 degrees in longitude and 5.5 degrees in latitude for the
COADS anomalies and 3.7 degrees in both longitude and latitude for the XBT data. In the Pacific



Table 1: Semivariogram functional fits.

CO Cle Cln CZE C2n Re Rn

Atlantic

COADS:

Linear 28 010 016 --- --- .017 .052
Exponential (Z) 22 24 28 7.8 5.7 005 .006
Exponential (G) 22 26 26 94 49 .007 .010
Gaussian (Z) 27 16 21 8.1 6.3 .012 .009
Gaussian (G) 27 .18 18 9.4 52 014 .022
XBT:

Linear 18 .009 013 --- --- .059 077
Exponential (Z) A2 15 21 2.4 3.7 .019 .028
Exponential (G) A2 18 .18 4.3 2.7 .033 .024
Gaussian (Z) .16 A1 .16 3.2 44 .019 024
Gaussian (G) 16 14 14 49 3.8 .036 021

Pacific

COADS:

Linear 39 .014 .027 - --- 025 .061
Exponential (Z) 30 37 .56 8.0 6.3 .010 .014
Exponential (G) 30 47 47 12.9 4.1 .020 .042
Gaussian (Z) .39 24 42 8.6 6.6 .020 .034
Gaussian (G) .39 33 33 13.2 4.6 .034 .069
XBT:

Linear 22 .007 015 --- - .017 .022
Exponential (Z) 18 15 35 53 10.3 .004 .007
Exponential (G) 18 25 25 15.8 5.0 .020 030
Gaussian (Z) 22 .10 24 6.1 8.0 .008 .017
Gaussian (G) 22 17 17 14.3 5.2 025 .048

Note: Z = zonal anisotropic
G = geometric anisotropic

Units are in (°C)? for C,, C,,, Cy,, R, and R, and degrees of longitude/latitude for C,,
and C,,.



the average longitude and latitude e-folding scales are 10.7 degrees and 5.4 degrees for COADS and
10.4 degrees and 7.1 degrees for XBT data. The more accurate XBT measurements (i.e., compared
to SST observations from VOS), lower geophysical noise, and larger variations in semivariogram
bin values, as a result of the sparsity of XBT data, are likely to have contributed to these results.

Input to design strategies and the results of OI mapping are strongly dependent on the choices
of analytical functions used to fit the raw semivariograms. For example, spatial resolution is often
given in terms of the scales derived from the fitting (e.g., two or three observations are needed per
decorrelation scale). However, the results given in Table 1 demonstrate that these scales are
critically dependent on the subjective choice of the analytical fitting function.

In the Pacific, for both the Gaussian and exponential fits, the zonal and geometric scales are
dramatically different (Table 1). The effect on sampling requirements can be demonstrated by
considering a criteria that three observations per decorrelation scale are needed to resolve variability
along a 60 degree long east-west VOS line. For a zonal exponential fit from the COADS data,
23 XBTs would be required to resolve the 8 degree spatial scales given in Table 1 and for a
geometrical exponential fit, only 14 XBTs would be needed. Over a one-year period of monthly
sampling a difference of over 100 probes would result.

Differences in the spatial scales in each direction and the rms errors are smallest for the zonal
anisotropic fits. In general, the exponential functions have smaller rms errors than the Gaussian
functions. The average e-folding scales obtained by using the geometric anisotropic functions are
quite different in each direction and agree more with those found by other investigators (Table 2).
In the Atlantic these spatial scales are 9.4 (4.6) degrees in longitude and 5.0 (3.3) degrees in latitude
and in the Pacific 13.1 (15.0) degrees in longitude and 4.3 (5.1) degrees in latitude for the COADS
(XBT) data.

White (1995), for example, indicates SST longitude and latitude decay scales of 7 degrees and
3 degrees for the tropical Atlantic and 9 degrees and 4.5 degrees for the tropical Pacific. We
calculated these scales by averaging the zero-crossing scales reported by White over the tropical
latitude bands and taking into account that the e-folding scales, according to White, are
approximately equal to one half of the reported zero-crossing scales. In the tropical Pacific,
Meyers et al. (1991) report longitude and latitude scales of approximately 30 degrees and 6 degrees
for SST anomaly fields (excluding El Nifio data). Including El Nifio data will result in longer scales
(Meyers et al. have shown a doubling of the scales); however, so will the inclusion of La Niiia data.
If El Nifio and La Nifia data were to be both removed from these calculations, there would be very
little, if any, data left. It is for this reason that we have not chosen to do separate analysis based on
the presence of an El Nifio.

The scales reported by White are based on geometric anisotropic correlation functions using
exponential fits and those by Meyers ef al. (1991) using Gaussian fits. Although the spatial scales
that we obtain using geometric anisotropic functions are closer to those of other investigators, we
feel that geometric anisotropic functional forms, especially in the Pacific, are not supported by either
the COADS or XBT data. In addition, if we use the results of the NCEP model and the
reconstructed fields of Smith and Dasilva as data sets, and calculate the semivariograms of their
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Table 2: Spatial scale lengths (in degrees).

Atlantic Pacific
Longitude Latitude Longitude Latitude
COADS (1) 8.7 5.5 10.7 5.4
COADS (2) 8.0 6.0 8.3 6.5
COADS (3) 9.4 5.0 13.1 43
XBT (1) 3.7 3.7 10.4 7.1
XBT (2) 2.8 4.0 5.7 9.1
XBT (3) 4.6 3.3 15.0 5.1
White (1995) @ 7.0 3.0 9.0 4.5
Meyers et al. (1991) (b) 30.0 6.0
Festa and Molinari (1992) 4.7 - 4.7 - —

(1) Average of zonal and geometric anisotropic cases.
(2) Average of zonal anisotropic cases.

(3) Average of geometric anisotropic cases.

(a) Including El Niflo data.

(b) Excluding El Nifio data.
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anomaly fields, all three semivariograms support the zonal anisotropic nature of the COADS and
XBT data in the tropical Pacific basin.

To repeat, the spatial scales that we find for SST (Table 1) differ significantly for the zonal and
geometric anisotropic functions. While knowledge of the spatial scales is important for some design
studies, as described above, geostatistical studies only use spatial scales as a guide to determining
how far out to reach for data (i.e., the practical range) when computing the values and errors of a
variable. In some cases the semivariogram (i.e., the linear model) has no spatial scale.

B. Subsurface Anomaly Semivariograms

The seasonal and annual composite tropical Atlantic and Pacific semivariogram binned values
for XBT data at depths of 200 m and 400 m are shown in Figures 10 and 11. Binned values are
suspect, especially in the tropical Atlantic, because of the sparsity of the data. This lack of data will
effect both the calculation of the climatology and, subsequently, the anomaly fields.

Exponential zonal anisotropic fits to the annual composite semivariograms for the surface and
subsurface are shown in Figure 12. In general, the spatial scales observed at 200 m and 400 m are
smaller than those at the surface. This is in agreement with the results of White (1995) and Festa
and Molinari (1992).

If we view the NCEP model output as a data set, comparisons can be made between XBT and
NCEP model annual composite semivariograms at various depths (Figures 13 and 14). The NCEP
semivariogram binned values are somewhat similar in shape to the XBT values for the tropical
Pacific. However, the same can not be said of the tropical Atlantic, especially at 200 m, where the
seasonal composite XBT semivariogram for June-August (Figure 10, JJA) looks more like the NCEP
annual composite. The NCEP results support the type of anisotropic behavior seen for the XBT
semivariograms in each ocean basin. It should be noted that the lower values of both the nugget and
total variance observed for NCEP is indicative of the smoothing that occurs in the model
calculations.

C. SST Anomaly Errors

In this section we compare anomaly fields that have been constructed based on the statistical
analysis of the COADS and XBT data to fields obtained from Dasilva, Smith, and the NCEP
numerical models. The anomaly fields are based upon the corresponding COADS, Dasilva, and
Smith climatologies, calculated over a 40-year time period (1950-1989), and the NCEP model
climatology, over a 10-year time period (1980-1989). Maps of the climatologies are shown in
Figures 15 and 16 for the Atlantic and Pacific Oceans, respectively. Climatology fields appear quite
similar.

SST anomaly fields and associated error maps have been computed for the COADS data based

upon the various semivariograms reported in the previous section. Gandin (1963) indicated that, in
general, the mapping of fields should not be overly sensitive to the choice of the covariance
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functions (i.e., spatial statistics) when there is moderately good data coverage. However, despite the
warning of Bretherton ef al. (1976) that this is not appropriate when data coverage is sparse, it is our
belief that Gandin’s general concept is typically applied independent of the data coverage and
minimal effort is spent determining the statistical representation of the data. We feel this is likely
to occur, for instance, when contour fields are reported to be “objectively mapped” and there is no
evidence of a study showing the underlying statistical representation of the fields to be mapped.

Herein, we have examined the effect of using either the exponential zonal (EZ) or Gaussian
geometric (GG) anisotropic semivariograms to compute the anomaly fields and associated error
maps in the tropical Atlantic and Pacific. These specific semivariograms have been chosen because
they represent the most contrasting anomaly statistics that we have found. Following the procedures
described in Festa and Molinari (1992), values of the COADS anomaly field have been computed
on the 2 degree COADS grid when there are at least six data points within a 15 degree search radius.

We show, as one example, COADS anomaly fields for January and July of 1983 (Figure 17)
generated by using the fitting parameters listed in Table 1 as determined by the analysis of the
COADS (EZC, GGC) and XBT (EZX, GGX) data sets. It is evident that there are differences in
both the anomaly and error fields for the exponential and Gaussian fits. In general, the traditional
Gaussian fit produces smoother anomaly fields and smaller error fields. Shorter scale features are
preserved using the exponential fit. The effect of smaller geophysical noise (i.e., a lower nugget)
is to produce lower errors and even shorter scale features. This can be seen by examining the
difference between using the COADS and XBT exponential zonal fits (EZC and EZX).

The error fields are also different by between .1°C and .2°C, especially in the areas of sparse
data (refer to Figures 1 and 2). These results point out the importance of the choice of the statistical
representation of the fields to be mapped, especially when the focus of design studies is the error
fields and where the sample spacing is based on the size of the expected errors. These differences
can become significant and once again reflect the highly subjective nature of this otherwise reported
objective process. Similar results were obtained when applying the different statistical functions to
the entire data set.

COADS anomaly fields have been computed for January and July for the time period of
1980-1989 using the exponential zonal anisotropic semivariograms. These fields are compared to
the results of Dasilva, Smith, and the NCEP model. Shown in Figure 18 are comparisons for January
and July of 1983 and 1987. The 1980-1989 COADS, Dasilva, Smith, and NCEP anomaly fields are
shown in Figures 19-22. Differences between these various anomaly fields are clearly evident.
There can be no comparison between the error fields, since no error analysis was done by Dasilva,
Smith, and NCEP. The COADS error fields (Figure 23) show the largest error in areas where there
are data voids; the area where some of the largest differences between the various anomaly fields
have been observed.

Both the NCEP and Smith analysis have all but eliminated the small scale spatial structure as
compared to the Dasilva and the COADS analysis. Dasilva’s fields show even smaller scale
variability than COADS. The most significant differences that exist are in the equatorial Pacific,
where there is very little data. The Smith and NCEP anomaly maps indicate a much larger zonal
correlation than either Dasilva or the COADS maps. The COADS and Dasilva fields are more
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similar in the Atlantic, where the spatial statistics indicate a lower degree of zonal anisotropy than
in the Pacific.

These results are not surprising since Smith’s analysis removes the short scale processes, and
the NCEP model in the Pacific is initialized by Smith’s data. Smith, for example, used 30 EOF
functions, based on the OI analysis of satellite data, Reynolds and Smith (1994), to determine the
spatial structure of the global oceans. Their OI analysis was based on Gaussian correlation functions
with geometric anisotropic scales of approximately 800 km in the east-west and 600 km in the
north-south directions. If more EOF functions had been used, it is likely that the shorter scales,
indicative of the original COADS data, would have been preserved.

Dasilva’s analysis, while preserving the shorter scales, is not based on an OI method. Dasilva
uses a Cressman method similar to Levitus (1982) to reconstruct the COADS data and does not
account for differences in the east-west and north-south spatial statistics. There also may be
problems with some of the mean values, as is evident by some of the bull’s eyes in the anomaly
maps and, therefore, Dasilva’s analysis may, in fact, be creating additional short spatial scale
variability.

D. Anomaly Error Analysis Along WOCE Tracklines

Shown for illustrative purposes (Figure 24) are the proposed WOCE tracklines that cross the
tropical Atlantic and Pacific regions chosen for this study. It should be noted that some of the
tracklines are currently being sampled on a regular basis; however, many are either being sampled
on a less frequent basis or not at all.

Error maps were obtained by applying the spatial statistics for the anomaly field to hypothetical
sampling strategies along the WOCE tracklines. Festa and Molinari (1992) have, for example,
shown that there is very little change in error maps when sampling along tracklines at a rate of either
1 probe per 120 nmi or 1 probe per 60 nmi. However, they show that there is a significant increase
in the error fields when the sampling rate is decreased to 1 probe per 240 nmi. Error analysis
calculations for the tropical Atlantic and Pacific confirm this; therefore, we only show results for the
sampling rate of 1 probe per 120 nmi. Since most VOS ships steam at speeds between 15 and
20 knots, this implies a drop rate of 3-4 probes per day.

Figures 25 and 26 show the error maps in the tropical Atlantic and Pacific using both the
exponential zonal (EZ) and Gaussian geometric (GG) SST semivariogram models based on XBT
and COADS analysis (see Table 1). In addition, the Gaussian geometric semivariograms are
modified slightly by changing the spatial scales C,, and C,,to reflect those reported by White (1995)
(GGW) and Festa and Molinari (1992) (GGFM) for the Atlantic and White (1995) (GGW) and
Meyers et al. (1991) (GGM) for the Pacific (see Table 2).

Little differences are observed between the error maps obtained using the various
semivariogram models for the Atlantic. This is not surprising since the analysis has shown that the
anomaly statistics are generally geometrically anisotropic and the spatial scales are short. However,
this is not the case for the Pacific where the scales are larger and more zonally anisotropic. In
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general, the errors are larger for the COADS semivariogram models than the XBT models. The
COADS semivariograms have the largest nugget and variances. There are also significant
differences between the results based on the exponential and Gaussian models, where the Gaussian
semivariograms indicate smaller errors, on the order of between .1°C and .2°C. Increasing the
spatial scales to reflect the large values reported by White (1995) and Meyers ef al. (1991) shows
a marked decrease in the error fields. Thus, the choice of the functional form and the spatial scales
have a profound effect on the etror fields in the Pacific.
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6. LIST OF FIGURES
January XBT data distribution in the tropical Atlantic for the time period 1980-1989.

January COADS data distribution in the tropical Atlantic for the time period
1980-1989.

July XBT data distribution in the tropical Atlantic for the time period 1980-1989.
July COADS data distribution in the tropical Atlantic for the time period 1980-1989.
January XBT data distribution in the tropical Pacific for the time period 1980-1989.
January COADS data distribution in the tropical Pacific for the time period 1980-1989.
July XBT data distribution in the tropical Pacific for the time period 1980-1989.
July COADS data distribution in the tropical Pacific for the time period 1980-1989.
Model semivariograms using linear, exponential, Gaussian, and power functions.

Model semivariograms using isotropic, geometric anisotropic, and zonal anisotropic
exponential functions.

Annual and seasonal composite SST semivariogram values for the COADS and XBT
anomaly data in the tropical Atlantic.

Annual and seasonal composite SST semivariogram values for the COADS and XBT
anomaly data in the tropical Pacific (150°E-90°W; 30°S-30°N).

Annual and seasonal composite SST semivariogram values for the COADS and XBT
anomaly data in the tropical Pacific Nifio 34 region (180°W-120°W; 30°S-30°N).

Monthly (January and July) and composite semivariogram values for the time period
1980-1989 for the SST XBT anomaly data in the tropical Pacific.

Linear, exponential, and Gaussian semivariogram model fits to the annual composite
SST, COADS, and XBT anomaly data in the tropical Atlantic.

Linear, exponential, and Gaussian semivariogram model fits to the annual composite
SST, COADS, and XBT anomaly data in the tropical Pacific.

Exponential zonal anisotropic semivariogram model fits to the annual composite
200 m and 400 m XBT anomaly data in the tropical Atlantic.
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Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17a.

Figure 17b.
Figure 17c.
Figure 17d.

Figure 18a.

Figure 18b.
Figure 18c.
Figure 18d.

Figure 19a.

Figure 19b.
Figure 19c.

Figure 19d.

Exponential zonal anisotropic semivariogram model fits to the annual composite
200 m and 400 m XBT anomaly data in the tropical Pacific.

Exponential zonal anisotropic semivariogram model fits to the annual composite SST,
200 m and 400 m XBT anomaly data in the tropical Atlantic and Pacific.

Annual composite semivariogram values for the NCEP and XBT anomaly SST, 200 m
and 400 m data in the tropical Atlantic.

Annual composite semivariogram values for the NCEP and XBT anomaly SST, 200 m
and 400 m data in the tropical Pacific.

January and July SST climatology based on COADS (1950-1989), Dasilva
(1950-1989), Smith (1950-1989), and NCEP (1980-1989) data in the tropical Atlantic.

January and July SST climatology based on COADS (1950-1989), Dasilva
(1950-1989), Smith (1950-1989), and NCEP (1980-1989) data in the tropical Pacific.

January 1983 COADS anomaly and error maps for the tropical Atlantic based on the
exponential zonal COADS (EZC) and XBT (EZX) semivariogram models and the
Gaussian geometric COADS (GGC) and XBT (GGX) models in the tropical Atlantic.
Same as 17a for July.

Same as 17a in the tropical Pacific.

Same as 17b in the tropical Pacific.

COADS, Dasilva, Smith, and NCEP anomaly fields in the tropical Atlantic for
January and July of 1983.

Same as 18a for 1987.
Same as 18a in the tropical Pacific.
Same as 18b in the tropical Pacific.

January tropical Atlantic anomaly maps for the COADS data during the time period
1980-1989.

Same as 19a for the Dasilva data.
Same as 19a for the Smith data.

Same as 19a for the NCEP data.
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Figure 20a.

Figure 20b.
Figure 20c.
Figure 20d.

Figure 21a.

Figure21b.
Figure 21c.
Figure 21d.

Figure 22a.

Figure 22b.
Figure 22c.
Figure22d.

Figure 23a.

Figure23b.
Figure 23c.
Figure 23d.
Figure 24.

Figure 25.

Figure 26.

July tropical Atlantic anomaly maps for the COADS data during the time period
1980-1989.

Same as 20a for the Dasilva data.
Same as 20a for the Smith data.
Same as 20a for the NCEP data.

January tropical Pacific anomaly maps for the COADS data during the time period
1980-1989.

Same as 21a for the Dasilva data.
Same as 21a for the Smith data.
Same as 21a for the NCEP data.

July tropical Pacific anomaly maps for the COADS data during the time period
1980-1989.

Same as 22a for the Dasilva data.
Same as 22a for the Smith data.
Same as 22a for the NCEP data.

January tropical Atlantic error maps for the COADS data during the time period
1980-1989.

Same as 23a for July.

Same as 23a for the tropical Pacific.

Same as 23b for the tropical Pacific.

Proposed WOCE XBT tracklines in the tropical Atlantic and Pacific.

Error maps for the tropical Atlantic based upon several XBT and COADS
semivariogram models and hypothetical sampling along the proposed WOCE
tracklines.

Error maps for the tropical Pacific based upon several XBT and COADS

semivariogram models and hypothetical sampling along the proposed WOCE
tracklines.
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January COADS Data Distribution
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July COADS Data Distribution
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July COADS Data Distribution
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Atlantic Semivariograms (SST)
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Pacific Semivariograms (SST)
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Pacific WOCE Trackline Errors
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